Advisory Committee Chair
Talene A Yacoubian
Advisory Committee Members
David Standaert
Andrew West
John Shacka
Michael Wyss
Document Type
Dissertation
Date of Award
2016
Degree Name by School
Doctor of Philosophy (PhD) Heersink School of Medicine
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common known cause of inherited Parkinson’s disease (PD), and LRRK2 is a risk factor for idiopathic PD. How LRRK2 function is regulated is not well understood. Recently, the highly-conserved 14-3-3 proteins, which play a key role in many cellular functions including cell death, have been shown to interact with LRRK2. In this study, we investigated whether 14-3-3s can regulate mutant LRRK2-induced neurite shortening and kinase activity. In the presence of 14-3-3θ overexpression, neurite length of primary neurons from BAC transgenic G2019S-LRRK2 mice returned back to wildtype levels. Similarly, 14-3-3θ overexpression reversed neurite shortening in neuronal cultures from BAC transgenic R1441G-LRRK2 mice. Conversely, inhibition of 14-3-3s by the pan-14-3-3 inhibitor difopein or dominant negative 14-3-3θ further reduced neurite length in G2019S-LRRK2 cultures. Since G2019S-LRRK2 toxicity is likely mediated through increased kinase activity, we examined 14-3-3θ’s effects on LRRK2 kinase activity. 14-3-3θ overexpression reduced the kinase activity of G2019S-LRRK2, while difopein promoted the kinase activity of G2019S-LRRK2. The ability of 14-3-3θ to reduce LRRK2 kinase activity required direct binding of 14-3-3θ with LRRK2. The potentiation of neurite shortening by difopein in G2019S-LRRK2 neurons was reversed by LRRK2 kinase inhibitors. Taken together, we conclude that 14-3-3θ can regulate LRRK2 and reduce the toxicity of mutant LRRK2 through a reduction of kinase activity.
Recommended Citation
Lavalley, Nicholas, "14-3-3 Proteins Regulate Mutant Lrrk2 Kinase Activity And Neurite Shortening" (2016). All ETDs from UAB. 2231.
https://digitalcommons.library.uab.edu/etd-collection/2231